

PLAN DOCENTE DE LA ASIGNATURA

Curso académico: 2025/2026

Identificación y características de la asignatura							
Código	402291						
Denominación (español)	Programación Virtual de Instrumentos						
Denominación (inglés)	Virtual Instrument Programming						
Titulaciones	Máster Universitario en Informática Industrial y Robótica						
Centro	Escuela de Ingenierías Industriales						
Módulo	Común UDC-ULL-UEX						
Carácter	Obligatoria	ECTS	4,5	Semestre	1°		
Profesor coordinador							
Apellidos, Nombre		Despacho Correo-e		-е			
Domínguez Puertas, Mig	guel Ángel D1.2 madomi			madominguez(@unex.es		
Área de conocimiento	Tecnología Electrónica						
Departamento	Ingeniería Eléctrica, Electrónica y Automática						
Profesor							
Apellidos, Nom	Despacho		Correo-e				
Carrillo Calleja, Juan Manuel		D1.7		jmcarcal@unex.es			
Área de conocimiento	Tecnología Electrónica						
Departamento	Ingeniería Eléctrica, Electrónica y Automática						

Resultados de aprendizaje

Conocimientos o contenidos

CON09: Identificar los principios de funcionamiento de los distintos tipos de sensores y actuadores adaptados a los diferentes entornos de operación, así como las tecnologías emergentes.

Habilidades o destrezas

HAB09: Desarrollar aplicaciones utilizando herramientas de programación visual.

HAB10: Elaborar y conectar dispositivos virtuales mediante interfaces gráficas.

Competencias

COMP03: Comunicar y transmitir conocimientos, habilidades y destrezas en el ámbito profesional de la robótica y la informática industrial.

COMP04: Conocer la legislación vigente y reglamentación aplicable al sector industrial y robótico.

COMP05: Resolver problemas con iniciativa y tomar decisiones, con creatividad y razonamiento crítico.

COMP06: Dominar la expresión y comprensión de forma oral y escrita de un idioma extranjero.

COMP07: Integrar en su profesión el respeto a la diversidad y la equidad entre todas las personas, implementando una mirada inclusiva y con perspectiva de género.

COMP08: Valorar el emprendimiento como elemento fundamental del impacto de la universidad en la sociedad y conocer los recursos al alcance de personas emprendedoras.

COMP11: Capacidad para aplicar técnicas de análisis de datos y técnicas inteligentes en robótica y/o informática industrial.

COMP13: Capacidad para uso y desarrollo de código y librerías que permitan captar el entorno y realizar visión por computador o realidad aumentada y actuar sobre él en sistemas robóticos y/o industriales.

COMP15: Capacidad para definir, diseñar y proyectar sistemas de producción automatizados y control avanzado de procesos.

COMP16: Capacidad para el uso y desarrollo de sistemas de comunicación para su aplicación sobre sistemas robóticos y/o industriales.

Contenidos

Introducción a los lenguajes de programación visual gráficos. Creación de instrumentos virtuales con entradas y salidas. Adquisición y generación de señales mediante instrumentos virtuales. Creación de un sistema de control y medida y supervisión basado en instrumentos virtuales.

Temario

Tema 1: Introducción a los lenguajes de programación visual gráficos.

Contenidos del tema:

- Introducción a la instrumentación basada en PC
- Entorno de programación gráfica en LabVIEW

Descripción de las actividades prácticas del tema (L):

• Conocer el entorno de programación en LabVIEW

Tema 2: Creación de instrumentos virtuales con entradas y salidas.

Contenidos del tema:

- Estructuras de programación
- Tipos de datos y estructuras de datos
- Representación gráfica de datos
- Programación modular

Descripción de las actividades prácticas del tema (L):

• Ejercicios de programación en LabVIEW

Tema 3: Adquisición y generación de señales mediante instrumentos virtuales.

Contenidos del tema:

- Tarjetas de adquisición de datos y su programación con LabVIEW
- Buses de comunicaciones en los equipos de instrumentación
- Comandos SCPI (Standard Commands for Programmable Instruments)
- Librería VISA (Virtual Instrument Software Architecture)
- Drivers para LabVIEW

Descripción de las actividades prácticas del tema (L):

- Programación de tarjetas de adquisición de datos
- Programación y control de fuentes de alimentación, multímetros, generadores de señal y osciloscopios

Tema 4: Creación de un sistema de control y medida y supervisión basado en instrumentos virtuales.

Contenidos del tema:

• Estructuras avanzadas de programación

Descripción de las actividades prácticas del tema (L):

- Programación avanzada de aplicaciones
- Creación de sensores virtuales

Actividades formativas							
Horas de trabajo del la alumno/a por tema		Horas gran grupo	Actividades prácticas			Actividad de seguimiento	No presencial
Tema	Total	GG	L	0	S	TP	EP
1	24	4,5	4,5				15
2	22	4	4				14
3	26	5	5				16
4	23	4,5	4,5				14
Evaluación	17,5	2,25					15,25
Prueba final	17,5	2,25					15,25
TOTAL	112,5	20,25	18				74,25

GG: Grupo Grande (85 estudiantes).

L: prácticas laboratorio o campo (15 estudiantes).

O: prácticas sala ordenador o laboratorio de idiomas (20 estudiantes).

S: clases problemas o seminarios o casos prácticos (40 estudiantes).

TP: Tutorías Programadas (seguimiento docente, tipo tutorías ECTS).

EP: Estudio personal, trabajos individuales o en grupo, y lectura de bibliografía.

Metodologías docentes

De entre las metodologías docentes incluidas en el plan de estudios del título para la asignatura, se utilizan las siguientes (marcadas con una "X" en la tabla):

Metodologías docentes	
Método expositivo / lección magistral Exposición oral de contenidos complementada con medios audiovisuales y la introducción de	
preguntas al alumnado. La lección magistral o conferencia es aquella impartida por un/a docente en ocasiones especiales, con un contenido original.	Х
Método práctico laboratorio	
Realización de actividades de carácter práctico (demostraciones, ejercicios, experimentos e investigaciones).	Х
Aprendizaje basado en proyectos o cooperativo	
La clase se organiza en pequeños grupos en los que el alumnado trabaja conjuntamente en la resolución de tareas asignadas por el profesorado. En el modo proyecto, estas tareas se enfocan a un trabajo de mayor complejidad, pudiendo extenderse a más de una materia o asignatura, de forma coordinada.	
Método de auto-información y aprendizaje autónomo	
Actividades para fomentar en el alumnado la realización de una búsqueda de recursos adecuados para poder evaluar su progreso.	Х
Evaluación	
Realización de pruebas escritas u orales.	Х

Sistemas de evaluación

Criterios de evaluación:

Se evaluará la asignatura de acuerdo con los siguientes criterios:

- CE1. Dominio de los contenidos teóricos de la asignatura. Relacionado con el contenido CON09, las competencias COMP04 y COMP08.
- CE2. Conocimiento de los procedimientos prácticos relacionados con la materia. Relacionado con las competencias COMP13, COMP15 y COMP16.
- CE3. Capacidad para aplicar los conocimientos adquiridos en la resolución de cuestiones de tipo práctico.
 - Relacionado con las competencias COMP05 y COMP11.
- CE4. Dominio de herramientas informáticas y de laboratorio relacionadas con la materia.
 - Relacionado con las habilidades HAB09 y HAB10.
- CE5. Capacidad para comunicar y transmitir los conocimientos en un lenguaje técnico apropiado, oral y escrito, dentro del campo de la tecnología electrónica. Relacionado con las competencias COMPO3, COMPO6 y COMPO7.

Actividades de evaluación:

De entre las actividades de evaluación incluidas en el plan de estudios del título, en la presente asignatura se utilizan las siguientes:

Actividad de evaluación	Rango establecido	Convocatoria ordinaria	Convocatoria extraordinaria	Evaluación global
Pruebas periódicas y/o examen final	20%–70%	70	70	70
Evaluación de trabajos y proyectos académicamente dirigidos	0%-60%			
Evaluación de prácticas	0%–60%	30	30	30
Evaluación continua, asistencia y participación en actividades	0%–20%			

Descripción de las actividades de evaluación:

Evaluación continua

• Actividad de evaluación 1.- Examen final

Esta actividad se corresponde con una actividad Recuperable. Tiene una ponderación sobre la calificación final del 70% tanto en la convocatoria ordinaria como en la extraordinaria. Consta de un único examen en el que se deberán resolver cuestiones teóricas y/o prácticas sobre la materia explicada en la asignatura. Se puntuará sobre una calificación máxima de 10 siendo necesario obtener una nota mínima de 4 para poder computar las notas del resto de actividades. En aquellos casos en los que no se consiga esta nota mínima y, sin embargo, el cómputo total de la nota supere la

calificación de 5, la nota final que aparecerá en el acta será de 4.5. En esta actividad se aplican los criterios de evaluación [CE1-CE5], evaluándose, por tanto, las competencias asociadas con dichos criterios.

Actividad de evaluación 2.- Entrega de los resultados de las sesiones de prácticas
Se corresponde con una actividad Recuperable. Los resultados obtenidos
durante el trabajo llevado a cabo en las sesiones prácticas de laboratorio
deben entregarse en un plazo de 7 días después de la sesión. Tiene una
ponderación sobre la nota final del 30% y se puntuará sobre una calificación
máxima de 10.

Es obligatorio haber asistido a todas las sesiones de prácticas permitiéndose faltar de forma justificada a 2 sesiones, pero debe recuperar estas sesiones antes del examen final. En esta actividad se aplican los criterios de evaluación [CE2-CE4], evaluándose las competencias asociadas.

En el caso en el que un alumno no haya asistido a las sesiones prácticas de Laboratorio, o haya suspendido la evaluación continua de esta actividad, para poder Recuperar esta actividad tendrá que superar un examen de prácticas. El examen consistirá en el montaje de una práctica similar a las realizadas en el laboratorio o aula de informática a lo largo del curso y la demostración y justificación de los resultados obtenidos.

Evaluación Global

La elección de la modalidad de evaluación global corresponde a los estudiantes, que podrán llevarla a cabo, durante el primer cuarto del periodo de impartición de la asignatura. Las solicitudes se realizarán, a través de un espacio específico creado para ello en el Campus Virtual. En caso de ausencia de solicitud expresa por parte del estudiante, la modalidad asignada será la de evaluación continua.

La evaluación global tendrá lugar el mismo día asignado al examen final de cada convocatoria por la Subdirección de Ordenación Académica de la E.II.II.

Constará de las siguientes pruebas:

- Parte Teórico-Práctica: prueba que se realizará con ayuda de un ordenador para utilizar las aplicaciones de programación estudiadas durante el curso para resolver las cuestiones planteadas en la prueba, con un peso del 70% en la calificación final.
- Parte de prácticas: consistirá en el montaje de una práctica similar a las realizadas en el laboratorio o aula de informática a lo largo del curso y la demostración y justificación de los resultados obtenidos, esta parte computa con un 30% en la calificación final.

Bibliografía

Bibliografía básica

- [1] J. del Río Fernández, S. Shariat-Panahi, D. Sarrià Gandul, A.M. Làzaro, LabVIEW. Pro-gramación para Sistemas de Instrumentación. Garceta, 2011.
- [2] Measurement and instrumentation, theory and application. Alan S. Morris y Reza Langari, Academic Press Elsevier, 2021.
- [3] Instrumentación Virtual. Adquisición, procesado y análisis de señales. Antoni Mànuel, et al. Edicions UPC. Junio de 2001.

Bibliografía complementaria

[4] Applied Virtual Instrumentation. R. Baican. D.S. Necsulescu. WITPress. Enero de 2000.

Otros recursos y materiales docentes complementarios

W1. Campus virtual de Universidad de Extremadura: http://campusvirtual.unex.es

W2. Recursos de Texas Instruments: https://www.ti.com/design-resources/overview.html

W3. Comunidad de ingenieros en electrónica: http://www.element14.com

W4. LabView: https://www.ni.com

W5. Introducing SCPI Commands – Rohde & Schwarz:

https://www.rohde-schwarz.com/es/driver-pages/control-remoto/2-

remoteprogramming-environments_231250.html